Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Genes Brain Behav ; 23(2): e12896, 2024 Apr.
Article En | MEDLINE | ID: mdl-38662955

Gastroesophageal reflux disease (GERD) is associated with sleep disturbances. However, mechanisms underlying these interactions remain unclear. Male acute and chronic sleep deprivation (SD) mice were used for this study. Mice in the chronic SD group exhibited anxiety- and depression-like behaviors. We further performed high-throughput genome sequencing and bioinformatics analysis to screen for featured differentially expressed genes (DEGs) in the esophageal tissue. The acute SD group, comprised 25 DEGs including 14 downregulated and 11 upregulated genes. Compared with the acute SD group, more DEGs were present in the chronic SD group, with a total of 169 DEGs, including 88 downregulated and 81 upregulated genes. Some DEGs that were closely related to GERD and associated esophageal diseases were significantly different in the chronic SD group. Quantitative real-time polymerase chain reaction verified the downregulation of Krt4, Krt13, Krt15 and Calml3 and upregulation of Baxl1 and Per3. Notably, these DEGs are involved in biological processes, which might be the pathways of the neuroregulatory mechanisms of DEGs expression.


Esophagus , Sleep Deprivation , Animals , Male , Sleep Deprivation/genetics , Sleep Deprivation/metabolism , Mice , Esophagus/metabolism , Gastroesophageal Reflux/genetics , Gastroesophageal Reflux/metabolism , Mice, Inbred C57BL , Transcriptome , Depression/genetics , Depression/metabolism
2.
ACS Omega ; 8(25): 23142-23147, 2023 Jun 27.
Article En | MEDLINE | ID: mdl-37396207

Compounds MBZ-mPXZ, MBZ-2PXZ, MBZ-oPXZ, EBZ-PXZ, and TBZ-PXZ were conveniently synthesized, and they were found to exhibit TADF properties with lifetimes of 857, 575, 561, 768, and 600 ns, respectively. These short lifetimes of the compounds might be due to the combination of small singlet-triplet splitting energy (ΔEST) and benzoate group, which could be an efficient strategy for the further design of short-lifetime TADF materials.

3.
Neural Regen Res ; 18(10): 2268-2277, 2023 Oct.
Article En | MEDLINE | ID: mdl-37056147

Controlled cortical impingement is a widely accepted method to induce traumatic brain injury to establish a traumatic brain injury animal model. A strike depth of 1 mm at a certain speed is recommended for a moderate brain injury and a depth of > 2 mm is used to induce severe brain injury. However, the different effects and underlying mechanisms of these two model types have not been proven. This study investigated the changes in cerebral blood flow, differences in the degree of cortical damage, and differences in motor function under different injury parameters of 1 and 2 mm at injury speeds of 3, 4, and 5 m/s. We also explored the functional changes and mitochondrial damage between the 1 and 2 mm groups in the acute (7 days) and chronic phases (30 days). The results showed that the cerebral blood flow in the injured area of the 1 mm group was significantly increased, and swelling and bulging of brain tissue, increased vascular permeability, and large-scale exudation occurred. In the 2 mm group, the main pathological changes were decreased cerebral blood flow, brain tissue loss, and cerebral vasospasm occlusion in the injured area. Substantial motor and cognitive impairments were found on day 7 after injury in the 2 mm group; at 30 days after injury, the motor function of the 2 mm group mice recovered significantly while cognitive impairment persisted. Transcriptome sequencing showed that compared with the 1 mm group, the 2 mm group expressed more ferroptosis-related genes. Morphological changes of mitochondria in the two groups on days 7 and 30 using transmission electron microscopy revealed that on day 7, the mitochondria in both groups shrank and the vacuoles became larger; on day 30, the mitochondria in the 1 mm group became larger, and the vacuoles in the 2 mm group remained enlarged. By analyzing the proportion of mitochondrial subgroups in different groups, we found that the model mice had different patterns of mitochondrial composition at different time periods, suggesting that the difference in the degree of damage among traumatic brain injury groups may reflect the mitochondrial changes. Taken together, differences in mitochondrial morphology and function between the 1 and 2 mm groups provide a new direction for the accurate classification of traumatic brain injury. Our results provide reliable data support and evaluation methods for promoting the establishment of standard mouse controlled cortical impingement model guidelines.

4.
Article En | MEDLINE | ID: mdl-36497676

To investigate the occurrence and development pattern of large-scale hazardous chemicals emergencies, a statistical analysis of 195 large and above accidents of hazardous chemicals in China during 2000-2020 was conducted. A general description of the characteristics of larger and above accidents based on statistical data was analyzed, and then the system risk of the hazardous chemical industry was calculated and evaluated by the entropy weight method and the TOPSIS method comprehensively. Results show that: (1) The geographical distribution of large and above hazardous chemical accidents (LAHCA) varies significantly; (2) The high-temperature season has high probabilities of having large and above accidents; (3) Human factors and management factors are the main causes of LAHCA; (4) During the period from 2000 to 2020, due to the rapid development of the chemical industry, the overall risk of accidents involving hazardous chemicals were upswing accompanied by volatility, and the risk of serious accidents remains high. The development history of safety regulations in China's hazardous chemical sector and the industry's projected course for future growth were then discussed. Finally, based on the findings of the aforementioned statistics and research, specific recommendations were provided for the safety management of the hazardous chemical sector. This study expects to provide a practical and effective reference for the construction of safety management as well as accident prevention in the hazardous chemical industry.


Chemical Hazard Release , Hazardous Substances , Humans , Accidents , Accident Prevention , Chemical Industry , China/epidemiology
5.
Neurobiol Stress ; 20: 100478, 2022 Sep.
Article En | MEDLINE | ID: mdl-35991686

Chronic sleep deprivation (SD) is a common problem for humans and can lead to many deleterious effects, including depression, anxiety, stroke, permanent cognitive deficits, stress, and other physiological diseases. It is vital to acquire information about the relevant neural activities at the whole-brain level to systematically explore the mechanisms of brain dysfunction related to SD. Expression of the immediate-early gene (IEG) Fos in the mouse brain has been widely used as a functional marker of brain activity in the field of neuroscience. However, most previous studies only analyzed the change of c-Fos in several specific brain regions using traditional research methods or in short-term SD model. Here, we applied c-Fos mapping through the fluorescence micro-optical sectioning tomography (fMOST) technique and AAV-PHP.eB to comprehensive analysis the state of cumulative activation across the whole brain in a mouse model of chronic SD. The chronic rapid eyes movement (REM) SD model was induced by moving mice to a separate holding area filled with water. The experimental period lasted for 6 h per day. The results showed that after 14 days of SD, the mice displayed anxiety-like behaviors in open field test and elevated plus maze test, and displayed depression-like behaviors in tail suspension test and the sucrose preference test. The c-Fos + cells were detected in a maximum of 230 brain regions. SD-induced stress model evoked c-Fos expression in several brain regions compared to the control group. In particular, the isocortex-cerebral cortex plate area, including the retrosplenial, anterior cingulate, agranular insular, gustatory, and parasubiculum, appear to be the most sensitive regions after chronic REM SD.

6.
Wiley Interdiscip Rev Cogn Sci ; 13(6): e1616, 2022 Nov.
Article En | MEDLINE | ID: mdl-35930672

Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by social disorder and stereotypical behaviors with an increasing incidence. ASD patients are suffering from varying degrees of mental retardation and language development abnormalities. Magnetic resonance imaging (MRI) is a noninvasive imaging technology to detect brain structural and functional dysfunction in vivo, playing an important role in the early diagnosisbasic research of ASD. High-field, small-animal MRI in basic research of autism model mice has provided a new approach to research the pathogenesis, characteristics, and intervention efficacy in autism. This article reviews MRI studies of mouse models of autism over the past 20 years. Reduced gray matter, abnormal connections of brain networks, and abnormal development of white matter fibers have been demonstrated in these studies, which are present in different proportions in the various mouse models. This provides a more macroscopic view for subsequent research on autism model mice. This article is categorized under: Cognitive Biology > Genes and Environment Neuroscience > Computation Neuroscience > Genes, Molecules, and Cells Neuroscience > Development.


Autism Spectrum Disorder , Autistic Disorder , Animals , Mice , Autism Spectrum Disorder/genetics , Magnetic Resonance Imaging/methods , Gray Matter/pathology , Brain , Disease Models, Animal
7.
Nat Biomed Eng ; 5(9): 1019-1037, 2021 09.
Article En | MEDLINE | ID: mdl-33859387

Effective anticancer nanomedicines need to exhibit prolonged circulation in blood, to extravasate and accumulate in tumours, and to be taken up by tumour cells. These contrasting criteria for persistent circulation and cell-membrane affinity have often led to complex nanoparticle designs with hampered clinical translatability. Here, we show that conjugates of small-molecule anticancer drugs with the polyzwitterion poly(2-(N-oxide-N,N-diethylamino)ethyl methacrylate) have long blood-circulation half-lives and bind reversibly to cell membranes, owing to the negligible interaction of the polyzwitterion with proteins and its weak interaction with phospholipids. Adsorption of the polyzwitterion-drug conjugates to tumour endothelial cells and then to cancer cells favoured their transcytosis-mediated extravasation into tumour interstitium and infiltration into tumours, and led to the eradication of large tumours and patient-derived tumour xenografts in mice. The simplicity and potency of the polyzwitterion-drug conjugates should facilitate the design of translational anticancer nanomedicines.


Neoplasms , Pharmaceutical Preparations , Animals , Cell Membrane , Endothelial Cells , Mice , Nanomedicine , Neoplasms/drug therapy
8.
Transl Res ; 235: 102-114, 2021 09.
Article En | MEDLINE | ID: mdl-33798765

Traumatic brain injury (TBI) is one of the leading causes of disability and paralysis around the world. Secondary injury, characterized by progressive neuronal loss and astrogliosis, plays important roles in the post-TBI cognitive impairment and mood disorder. Unfortunately, there still lacks effective treatments, particularly surgery interferences for it. Recent findings of intercellular mitochondria transfer implies a potential therapeutic value of mitochondria transplantation for TBI, which has not been tested yet. In the present study, we demonstrated a quick dysfunction of mitochondria, up-regulation of Tom20 in the injured cortex and subsequent cognitive and mood impairment. Our data demonstrated that mitochondria derived from allogeneic liver or autogeneic muscle stimulated similar microglial activation in brain parenchyma. In vitro experiments showed that exogenous mitochondria could be easily internalized by neurons, astrocytes, and microglia, except for oligodendrocytes. Mitochondria transplantation effectively rescued neuronal apoptosis, restored the expression of Tom20 and the phosphorylation of JNK. Further analysis revealed that mitochondria transplantation in injured cortex induced a significant up-regulation of BDNF in reactive astrocytes, improved animals' spatial memory and alleviated anxiety. In together, our data indicate that mitochondria transplantation may has the potential of clinical translation for TBI treatment, in combination with surgery.


Astrocytes/metabolism , Brain Injuries, Traumatic/therapy , Brain-Derived Neurotrophic Factor/biosynthesis , Mitochondria/transplantation , Neurons/physiology , Animals , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/psychology , Cell Survival , Cells, Cultured , Endocytosis , Male , Mice , Mice, Inbred C57BL , Mitochondria/physiology
9.
Biochem Biophys Res Commun ; 550: 22-29, 2021 04 23.
Article En | MEDLINE | ID: mdl-33677132

Autism spectrum disorders (ASD) are a group of neurological disorders which affect approximately 1% of children around the world. Social dysfunction is one of the two core syndromes of ASD, and still lacks effective treatment. Transcranial magnetic stimulation (TMS) is a noninvasive and safe procedure that uses magnetic fields to modulate neural activity. Whether it were effective in modulating social function remains unclear. By using 3-chamber test, ultrasonic vocalization recording and Western-blotting, we demonstrated that FMR1 (fragile X mental retardation protein) mutant mice, a model of ASD, exhibited obvious defects in social preference and ultrasonic communication. In addition, we detected increase of p-Akt (S473) and p-GSK-3ß (S9), and decrease of p-PSD-95 (T19) in the anterior cingulate cortex (ACC) of FMR1-/- mice. Treating FMR1-/- mice with 1 Hz repetitive TMS (rTMS) exerted a long lasting effect in improving both the ultrasonic communication and social preference, as well as restoring the levels of Akt/GSK-3ß activity and spine density in the FMR1-/-ACC. Our data, for the first time, demonstrated a beneficial effect of low frequency rTMS (LF-rTMS) on the social function of FMR1-/- mice and an involvement of Akt/GSK-3ß signaling in this process, indicating LF-rTMS as a potential therapeutic strategy for ASD patients.


Fragile X Mental Retardation Protein/genetics , Gene Deletion , Glycogen Synthase Kinase 3 beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Social Behavior Disorders/prevention & control , Social Behavior Disorders/therapy , Transcranial Magnetic Stimulation , Animal Communication , Animals , Autism Spectrum Disorder/prevention & control , Autism Spectrum Disorder/therapy , Female , Gyrus Cinguli/metabolism , Male , Mice , Time Factors , Ultrasonics
10.
Talanta ; 222: 121664, 2021 Jan 15.
Article En | MEDLINE | ID: mdl-33167279

Abnormal O-linked N-acetylglucosamine (O-GlcNAc) concentrations have been associated with many diseases, but the lack of accurate detection method limited O-GlcNAc to be used as a biomarker in clinical diagnosis. Then O-GlcNAc transferase (OGT) has drawn researchers' attention as it closed related to the level of O-GlcNAc and be considered to be a promising new target for diseases diagnosis. Nevertheless, the existing OGT detection methods are either need labeling or the sensitity can not meet the needs of clinic testing. Herein, a label-free and sensitive SPR biosensor was developed for accurate detection of OGT based on a multi-functional peptide. The designed peptide contains three recognition sites, one is the cleavage site of protease K, one is the O-GlcNAcylated site by OGT, and another is six histidine which be used as the signal report probe to recognize Ni2+. The immobilized peptide would be cleavaged by proteinase K, then the His-tag residue part will leave the surface of Au film, resulting less His-tag could bind to Ni2+ and a small SPR signal would be record. If the peptide is O-GlcNAcylated by OGT, the cleaving reaction would be limited due to the adjacent site of O-GlcNAcylation. Then more His-tag can be left on the Au film and a bigger SPR signal could be record, this signal is associated with the concentration of OGT. Utilizing the change of the peptide configuration as a signal report probe for OGT detection not only avoids labeling of peptide, but also makes the method more sensitive. The determination linear range of OGT is from 2.00 × 10-13 to 5.00 × 10-8 M with a detection limit of 1.19 × 10-13 M, and the separation of two enzyme reactions ensured the high selectivity of the method. Finally, the sensing system was successfully used for OGT detection in blood samples with satisfied recovery. In summary, the label-free SPR platform for accurate detection of OGT in real samples is helpful to promote OGT serve as a biomarker for early clinical diagnosis of O-GlcNAc related diseases.


Biosensing Techniques , Surface Plasmon Resonance , Glycosylation , N-Acetylglucosaminyltransferases , Peptides
11.
Nanotechnology ; 31(23): 235708, 2020 Mar 20.
Article En | MEDLINE | ID: mdl-32053800

Gold nanoparticle (AuNP) modification shows great advantages in improving the antioxidant activity of nanoCeO2. However, the improved effect of AuNP modification becomes smaller and even results in the decrease of antioxidant ability due to severe aggregation with increasing nanomaterial concentration. Additionally, the effects of photo-properties of AuNPs on the antioxidant activity of nanoCeO2 have not been studied. In response to these problems, core-shell-shaped Au@CeO2 was synthesized which took Au nanorods (AuNRs) as carriers and had a layer of CeO2 NP coating. The antioxidant activity of Au@CeO2 was evaluated by the UV-vis method in the methyl violet-Fenton system. Results showed that AuNRs could improve the antioxidant activity of nanoCeO2 due to the increase in the amount of Ce3+ on the surface of nanoCeO2, and the enhancing effect remained across the whole experimental concentration range due to the good dispersibility of AuNRs. Additionally, a further increase in the antioxidant ability of Au@CeO2 was found with 5 min visible light irradiation, and continuous irradiation during a 25 min time reaction, which resulted in more obvious enhanced antioxidant ability. This phenomenon was attributed to the localized surface plasmon resonance of AuNRs triggered by photons which induced charge transfer from AuNRs to nanoCeO2, thus making the cyclic transformation between Ce3+ and Ce4+ easier.

12.
Anal Chim Acta ; 1040: 90-98, 2018 Dec 21.
Article En | MEDLINE | ID: mdl-30327117

Abnormal O-linked-N-acetylglucosamine (O-GlcNAc) concentrations have been associated with a variety of diseases (e.g., cancer, Alzheimer's disease, cardiovascular disease, etc.). However, O-GlcNAc detection is complicated, time-consuming and has poor specificity, therefore, the accurate detection of O-GlcNAc is difficult. In this study, an accurate and sensitive surface plasmon resonance (SPR) biosensor for O-GlcNAc detection that is based on ß-D-N-acetylglucosaminidase (OGA) and Au nanoparticles (AuNPs) was developed. In this strategy, AuNPs were used to amplify the SPR signal and improve the biosensor's sensitivity; OGA was used to cleave O-GlcNAc from O-GlcNAcylated biomolecules. The interaction between AuNPs labeled wheat germ agglutinin (AuNPs/WGA) and O-GlcNAcylated biomolecules on a modified Au film treated with and without OGA was recorded by SPR. The change of the SPR signal moves linearly with the amount of O-GlcNAc on the Au film and thus could be used for the detection of O-GlcNAc. By recording the difference of the SPR signals, this method can avoid disturbances from other sugars and nonspecific adsorption of AuNPs and thus enable the accurate detection of O-GlcNAc. The accurate detection range of O-GlcNAc was 4.65 × 10-12 to 4.65 × 10-7 M which was obtained by quantifying the amount of a standard O-GlcNAcylated peptide (O-GlcNAc-CREB), and the detection limit is 4.65 × 10-13 M. More importantly, the strategy was successfully used to detect O-GlcNAc in a real α-crystallin protein, cancer cell lysates and blood samples with satisfactory results. The study's results imply that this accurate and sensitive method has the potential to be applied in the early clinical diagnosis of O-GlcNAc-related diseases.


Acetylglucosamine/blood , Biosensing Techniques , N-Acetylglucosaminyltransferases/metabolism , Surface Plasmon Resonance , Acetylglucosamine/metabolism , Cell Line , Gold/chemistry , Humans , Metal Nanoparticles/chemistry
13.
Nanotechnology ; 29(38): 385101, 2018 Sep 21.
Article En | MEDLINE | ID: mdl-29949520

Many nanomaterials have been reported to have enzyme-like activities and are considered as nanozymes. As a multifunctional nanozyme, nanoceria has received much attention due to the dual oxidation states of Ce3+/Ce4+ which facilitate redox reactions at the particle surface. Despite the advantages of nanozymes, their limited activity and lack of enzyme specificity are still problems to be resolved. DNA is used to modulate the oxidase activity of nanoceria because it has recently become an important molecule in bionanotechnology. However, the current research on the effect of DNA on the oxidase mimetic activity of nanoceria is contradictory. It has been discovered that nanoceria used in recent works are different, including in particle size, doping and concentration, and these differences may affect the interaction between DNA and nanoceria, and then affect the oxidase mimetic activity of nanoceria. Hence, it is important to clarify the factors that affect the interaction between DNA with nanoceria. In this work, the interactions between DNA and nanoceria with three different morphologies (nanoparticles, nanocubes, and nanorods) have been investigated. Experimental results show that DNA has different influences on the oxidase mimetic activity of nanoceria with different morphologies. The oxidase mimetic activity of CeO2 nanoparticles and nanocubes increased, but that of CeO2 nanorods decreased, after DNA modification. The mechanism of these experimental results has been explored, and it has been found that it is the interaction between cerium and the phosphate backbone of DNA that changes with the different morphologies, resulting in the varying effect of DNA on the oxidase mimetic activity of nanoceria. These results may provide a better understanding of the effect of DNA on the oxidase mimetic activity of nanoceria and promote the applications of nanoceria.


Cerium/metabolism , DNA/metabolism , Oxidoreductases/metabolism , Nanoparticles/chemistry , Oxidation-Reduction/drug effects , Particle Size
14.
Ying Yong Sheng Tai Xue Bao ; 19(5): 1071-6, 2008 May.
Article Zh | MEDLINE | ID: mdl-18655595

Based on the MODIS data and field measurement, the net primary production (NPP) in 2000 and 2006 in the middle reaches of Yarlung Zangbo River and its two tributaries in Tibet were estimated by using a mathematic model. The results showed that in study area, the NPP decreased gradually from valley to ridge, which was accorded with the gradients of precipitation and temperature. The annul NPP per unit area was averagely 86.8 g C m(-2) a(-1), and was 2.15 g C m(-2) a(-1) higher in 2006 than in 2000. Farmland ecosystem had the highest annual NPP per unit area (243.1 g C m(-2) a(-1)), while desert ecosystem had the lowest one (36.5 g C m(-2) a(-1)). The average total NPP in the two years was 512.8 x 10(10) g C a(-1), with the value in 2006 being 12.7 x 10(10) g C a(-1) higher than that in 2000. Meadow ecosystem had the highest annual total NPP (194.4 x 10(10) g C a(-1)), while desert ecosystem had the lowest one (30.3 x 10(10) g C a(-1)). In 2000-2006, the NPP value in the areas with strong human disturbance (0-4 km away from road) had a decreasing trend, while that in the areas difficult for human to reach was in adverse.


Biomass , Crops, Agricultural/growth & development , Ecosystem , Trees/growth & development , Models, Theoretical , Poaceae/growth & development , Rivers , Satellite Communications , Tibet
...